
Audit LP-migration

March 2022

Contents

Page

Disclaimer 2

Introduction 3

Overview 4
Project summary . 4
Audit summary . 4
Vulnerability summary . 4
Code Quality summary . 4

Vulnerability 5
V1. Invalid re-entrance test for migrate entry-point . 6
V2. Token loss . 6
V3. Stealing tokens . 7
V4. Default Ownership to source may be an issue . 7
V5. Documentation of call sequence is ambiguous . 8

1

Disclaimer

This report does not provide anywarranty or guarantee regarding the absolute bug-free nature
of the technology analyzed.

This report represents an extensive assessing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Wulfman
Corporations position is that each company and individual are responsible for their own due dili-
gence and continuous security. Wulfman Corporations goal is to help reduce the attack vectors
and the high level of variance associated with utilizing new and consistently changing technolo-
gies, and in no way claims any guarantee of security or functionality of the technology we agree
to analyze.

2

Introduction

This audit was commanded toWulfman Corporation, in quality of main contributor and expert
of LigoLANG, by Ekino

The object of the audit is the analysis of the LP-migrationin order to identify vulnerabilities and
contract optimizations in the source code.

The contract targets the Tezos blockchain andwas developed in LigoLANG. The auditingmeth-
ods consist in manual review

The auditing process paid special attention to ensuring that the contract logic is coherent and
implements the specification and the best testing schemes.

3

Overview

Project summary

Project Name LP-migration
Publisher Ekino
Platform Tezos
Language Smartpy
Codebase https://github.com/Smartlinkhub/LP-Migration
Original commit fea7e52071f09fe97c910e1401fcc5e0463e9341
Contract address
Contract URL

Audit summary

Auditor Wulfman Corporation
Delivery date March 2022
Scope Smartpy contracts
Methodology Manual review
Tezos version Hangzhou
Tezos client version

Vulnerability summary

Total issues 5
Critical 0
Major 3
Medium 0
Minor 1
Informational 1

Code Quality summary

Total improvements 0
Maintenance 0
Scalability 0
Readability 0
Origination cost 0
Gas cost 0

4

https://github.com/Smartlinkhub/LP-Migration

Vulnerability

Contents
V1. Invalid re-entrance test for migrate entry-point . 6
V2. Token loss . 6
V3. Stealing tokens . 7
V4. Default Ownership to source may be an issue . 7
V5. Documentation of call sequence is ambiguous . 8

General Remark

The contract being use as a trusted 3rd party to move asset from a first DEX (Quipuswap) to a
new one (Vortex), its inner behavior remains quite straightforward while a specific care needs
to be put in the contract to contract interactions and the possible issues that result in calling a
malicious contract. According to the information ported to our attention and our understanding
of migration_quipuswap_vortex_fa2.py and migration_quipuswap_vortex_fa12.py, the re-entrance is-
sues related to these contracts are correctly handled, as long as the user call the contract through
the Smartlink UI. (Except for the potential Token loss issue mentioned in section V2. when use
with amalicious Token contract. We can argue that such a token will have no economic value. We
let the reader decide if the loss of such token is an issue)

In case the user doesn’t use the SmartLink UI (for instance, an attacker sending a malicious
lookalike UI or doing a man in the middle attack, which will then inject wrong values for both
DEX), some attacks become possible due to the different point indicated in the document. As we
cannot guarantee how the smart-contract will be used, the severity level doesn’t take into account
that the UI is trustworthy. The proposed solutions should fix the vulnerabilities even in the case of
malicious UI.

Notice that these re-entrance problems is link to the necessity of communicating with a call-
back mechanism, which interrupt the normal flow of the algorithm and split it in several callable
entry-point, opening a surface of attack. Interacting with contract that use the view mechanism
instead (which should be the norm in the future) will avoid this issues

5

V1. Invalid re-entrance test for migrate entry-point

Category Severity Location Status
Potential vulnerabilities Major migration_quipuswap_vortex_fa2.py //

Description
Migrate should be called only at the beginning of the call sequence. To do so, it checks that the
migration data are None, or if they are not none. That the current source is different from the one
stored in the storage.

For this last case to happen, youwould need a first call tomigrate, that triggers a chain reaction
which will call the balance_of entrypoint of the Token contract. Then the contract will not use the
callback to themigration contract, leaving it in an unstable state

An adversary could craft a token contract that will do so, and then send a transaction from an-
other source account to reenter the contract. Thus, the guard of this entry-point does not prevent
re-entrance. It only prevent that the reentrancy occurs in a single external transaction instead of
several.

Solution
In order to prevent any re-entrance, the entry-point should fail when migration data are not None
(or when state is NO_MIGRATION). However, this will allow to DDoS the contract with a similar attack.
And this is probably the reason why the contract is currently not doing so.

To prevent this, this contract need a mechanism to clean the contract and put it back a safe
state. This mechanism can be a separate entry-point. By doing so, an attacker can still regularly
send transactions that will block the contract after a reset. Considering that it should not cause a
security issue that anyone can reset the contract (instead of just an admin), the reset mechanism
can be at the beginning of the migrate entry-point which stop the possibility of DDoS.

V2. Token loss

Category Severity Location Status
Potential vulnerabilities Major migration_quipuswap_vortex_fa2.py

Description
If the migration operation were to be incomplete (due to a call to an adversarial contract in an
internal transaction similarly to the previous point V1.), but after the call to the transfer entry-
point of the contract Token. Then the entry-point will have concluded, leading to tokens being
move from a user account to theMigration contract account. Those token are now belonging to
themigration contractwhich is not able to use them.

6

Solution
Similar to the previous section. The smart-contract should provide an entry-point to "fix" the con-
tract in case if it endsup in an incoherent state. This entry-pointwill look into the valueof storage.stage
to detect which step have been executed before and needs to be reverted

V3. Stealing tokens

Category Severity Location Status
Potential vulnerabilities Major migration_quipuswap_vortex_fa2.py

Description
Following on the previous ideas. And on the fact that contract address are not hard-coded but
given at each call to migration. An adversary could trick user to first do a migration with the right
Initial_Dex contract and any Token contract but a malicious Vortex contract. This will have the
effect to load the user address on the migration contract account. Then a call by the exploiter
to the contract with the right Vortex contract will have the effect to move the token from the
migration contract account to the exploiter account.

N.B. : This should not be an issue as long as the user go through the design IU and don’t make
the transaction itself

Solution
Instead of making both DEX address as parameter, hard-code them in the code or initialize them
at origination. This is inmost case a goodpractice as it reduce the surface of attack for the contract.

V4. Default Ownership to source may be an issue

Category Severity Location Status
Potential bug Minor migration_quipuswap_vortex_fa2.py

Description
The contract considers that the owner of the token to transfer is the source of the transaction.
Which means the migration can only be done for user account and not for implicit accounts. It
could be an issue if implicit accounts are registered on the DEX.

Solution
Allowing the owner to be any account given as a parameter seem to create other security issue but
since we need to approve the migration contract before, it should be alright. The other solution
would be to take the sender, but then the contract linked to the implicit account need to have an
entry-point for the migration, which makes no sense.

In this end this may be a necessary limitation.

7

V5. Documentation of call sequence is ambiguous

Category Severity Location Status
Documentation Informational migration_quipuswap_vortex_fa2.py

Description
The provided sequence diagram was appreciated. However, it is odd looking that the transfer
operation doesn’t start right after the transaction, as if contract execution were asynchronous, like
for web servers. After further looking, it seems that the error was that the arrows represent the
creation of the corresponding operations in the calling contract and not the call of this internal
operation by the protocol, which is a bit odd.

Solution
I remade the diagram making the operation start right after the call. It is still not realistic as on
my diagram there are additional processing after the call when normally all internal operations
are emitted at the same time. I decided to add it for illustration and possible discussion on what
would be the correct way to present the sequence diagram for Tezos smart-contract

8

Initial_Dex Initial_Dex_LP_Token

User

approve

Voxtex Vortex_LP_Token

transfer remaining asset token

Token Migrate_Contract

refund_XTZ_dust

finalize_migration

approve lp_token_amount

migrate

transfer

transfer lp_token_amount

Divest Liquidity
burn User's LP token

transfer

transfer tokens

default_receive_xtz

transfer XTZ

balance_of

handle_intermediate_assets

approve

approve asset Token

add_liquidity

transfer

transfer asset Token

mint_or_burn

mint Vortex LP token

transfer asset Token

balance_of

refund_token_dust

transfer

9

	Disclaimer
	Introduction
	Overview
	Project summary
	Audit summary
	Vulnerability summary
	Code Quality summary

	Vulnerability
	Invalid re-entrance test for migrate entry-point
	Token loss
	Stealing tokens
	Default Ownership to source may be an issue
	Documentation of call sequence is ambiguous

